مقایسه عملکرد دو مدل DRAINMOD و شبکه عصبی مصنوعی در پیشبینی سطح ایستابی (مطالعه موردی: مزارع کشت و صنعت نیشکر دعبل خزاعی)
نویسندگان
چکیده مقاله:
آزمایشهای مزرعه ای به منظور شناخت شرایط موجود سامانههای زهکشی مفید هستند، اما محدودیت های قابل توجهی نیز دارند. ازجمله اینکه، این آزمایشها را نمیتوان برای پیش بینی استفاده کرد. کاربرد مدلهای شبیهسازی این محدودیتها را تا حدود زیادی برطرف میکند. اما قبل از کاربرد چنین مدلهایی، درستی نتایج بدست آمده از آنها باید با نتایج آزمایش های مزرعه ای مقایسه گردد. در این پژوهش از مدل شبکه عصبی مصنوعی (ANN) و مدل DRAINMOD برای پیشبینی سطح ایستابی استفاده شد. بدین منظور مزرعه 11-9R از مزارع نیشکر دعبل خزاعی انتخاب و پارامترهای ورودی مدلها شامل نوسانات سطح ایستابی، حجم آب آبیاری، دبی زهکشها، دادههای اقلیمی منطقه، خصوصیات فیزیکی خاک و پارامترهای سیستم زهکشی از تاریخ 2/8/92 تا 2/7/93 برداشت گردید. نتایج نشان داد که بالاترین دقت در پیش بینی سطح ایستابی مربوط به مدل شبکه عصبی مصنوعی میباشد. به طوریکه مقدار RMSE بین مقادیر اندازه گیری شده و شبیه سازی شده با مدل شبکه عصبی مصنوعی و مدل DRAINMOD به ترتیب برابر 02/0 و 8/16 بدست آمد.
منابع مشابه
شبیه سازی شوری آب زیرزمینی با استفاده از شبکه عصبی مصنوعی، الگوریتم بهینهسازی ذرات و مدل SEAWAT (مطالعه موردی: مزارع کشت و صنعت نیشکر دعبل خزاعی)
سابقه و هدف: شوری خاک عامل مهم در کاهش عملکرد مزارع نیشکر واقع در جنوب غربی ایران میباشد. بنابراین مطالعه و پایش این عامل در زمینهای تحت کشت نیشکر، امری لازم و ضروری میباشد. اما با توجه به وسعت زیاد مناطق زیر کشت نیشکر و تعدد زیاد مزرعهها، مطالعه و پایش این عوامل در هر مزرعه بسیار وقتگیر و پرهزینه است. استفاده از مدلهای کامپیوتری با توجه به سرعت بالا و هزینه کم، بهعنوان گزینهای مناسب جه...
متن کاملشبیه سازی شوری آب زیرزمینی با استفاده از شبکه عصبی مصنوعی، الگوریتم بهینه سازی ذرات و مدل seawat (مطالعه موردی: مزارع کشت و صنعت نیشکر دعبل خزاعی)
سابقه و هدف: شوری خاک عامل مهم در کاهش عملکرد مزارع نیشکر واقع در جنوب غربی ایران می باشد. بنابراین مطالعه و پایش این عامل در زمین های تحت کشت نیشکر، امری لازم و ضروری می باشد. اما با توجه به وسعت زیاد مناطق زیر کشت نیشکر و تعدد زیاد مزرعه ها، مطالعه و پایش این عوامل در هر مزرعه بسیار وقت گیر و پرهزینه است. استفاده از مدل های کامپیوتری با توجه به سرعت بالا و هزینه کم، به عنوان گزینه ای مناسب جه...
متن کاملمدلسازی هزینه ماشین های برداشت نیشکر در شرکت کشت و صنعت دعبل خزاعی با استفاده از شبکه ی عصبی مصنوعی
مدیریت ماشین ها و تجهیزات سنگین وظیفه ی بسیار دشواری می باشد. یک مدیر اغلب باید تصمیم گیری های پیچیده ی اقتصادی در ارتباط با هزینه های ماشین های کشاورزی اتخاذ کند. این تصمیم گیری ها عبارتند از: مالکیت ماشین، نگهداری، تعمیرات، بازسازی، جایگزینی و منسوخ شدن ماشین ها. مدیر همچنین باید قادر به پیش بینی نرخ اجاره ی داخلی ماشین های تحت نظارت خود باشد. هزینه های نگهداری و تعمیرات می تواند اثرات قابل م...
15 صفحه اولشبیه سازی بارهیدرولیکی با استفاده از الگوریتم بهینه سازی تجمع ذرات و الگوریتم ژنتیک (مطالعه موردی: مزارع کشت و صنعت نیشکر دعبل خزاعی)
آزمایشهای مزرعهای به منظور شناخت شرایط موجود سامانههای زهکشی مفید هستند، اما محدودیتهای قابل توجهی نیز دارند. از جمله اینکه، این آزمایشها را نمیتوان برای پیشبینی استفاده کرد. کاربرد مدلهای شبیهسازی این محدودیتها را تا حدود زیادی برطرف میکند. اما قبل از کاربرد چنین مدلهایی، درستی نتایج بدست آمده از آنها باید با نتایج آزمایشهای مزرعهای مقایسه گردد. در این پژوهش از الگوریتم بهینهسازی...
متن کاملمدل سازی تأثیر نوسانات سطح ایستابی بر میزان محصول نیشکر با استفاده از شبکه عصبی مصنوعی و منطق فازی (مطالعه موردی کشت و صنعت میرزا کوچک خان)
پارامترها و عوامل مختلفی بر عملکرد مزارع نیشکر تأثیر گذارند. با بررسی این پارامترها و تعیین میزان اثر هریک از آنها در عملکرد نیشکر، می توان راهکارهایی ارائه داد که با بهره گیری از امکانات و شرایط موجود حداکثر عملکرد را در مزارع نیشکر بدست آورد. در این تحقیق نتایج بررسی های صحرایی نشان داد سطح ایستابی در ماه های تیر، مرداد، شهریور و مهر به علت آبیاری مزارع در عمق کمتری نسبت به سطح زمین قرار می...
15 صفحه اولمقایسه کارایی روشهای شبکه عصبی مصنوعی و برنامهریزی بیان ژن برای پیش بینی سطح ایستابی در مناطق خشک و نیمه خشک ( مطالعه موردی: دشت جیرفت)
مدلسازی و پیشبینی سطح ایستابی چاهها یکی از کارهای اساسی برایرسیدن به مدیریت بهینه منابع آب میباشد. یکی از راههای پیشبینی سطح آب زیرزمینی استفاده از تکنیکهای هوش مصنوعی نظیر شبکه عصبی مصنوعی و برنامهریزی بیان ژن میباشد. هدف از این پژوهش بررسی کارایی روش شبکه عصبی مصنوعی و برنامهریزی بیان ژن در پیشبینی سطح ایستابی آب زیرزمینی آبخوان دشت جیرفت میباشد. به این منظور از دادههای سطح ایست...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 17 شماره 1
صفحات 1- 11
تاریخ انتشار 2019-03-21
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023